fashion + technology
While searching for example uses of shape memory alloy (AKA muscle wire) I ran across the blog of MIT Tangible Media Group PhD Candidate Leonardo Bonnani, “hyperexperience“.

He has a great post, “robo-fabric“:

the shape memory alloy nitinol has the ability to spring back to its original forged shape when heated, allowing soft actuation without motors. italian fashion designers grado zero made a shirt that rolled up its own sleeves when the wire (and the wearer) overheat (above). later joanna berzowska and marcelo coelho made kukkia and vilkas, two garments where the thin metal wires are woven into clothing for different kinetic effects. in kukkia, ornamental felt flowers containing a coil of nitinol wire open and close through a tiny circuit and lithium battery. vilkas, like the shirt, raises and lowers the hem through vertical strands of wire in a gauze section of dress.

He also has several posts on the subject of “open source threads”. Here he introduces Burdastyle:

Burdastyle is an open-source sewing resource where members upload patterns and visitors can consult instructional references (below) or download pdf patterns (above). By providing instructions for how to sew at the same time as open source ‘code’ for what to sew the site is a real open source free fashion resource. As with free software, it would be interesting to see how clothing for specialized applications (work clothes, uniforms) could be generated by ‘users’ who are more familiar with the needs of unique populations that traditional ‘designers.’

Burdastyle has this to say for themselves:

We are a friendly, helpful and active bunch who want to use the web to bring traditional sewing craft to a new generation of fashion designers, sewing hobbyists, DIY’ers and anyone looking to sew something.

Use BurdaStyle to download copyright-free sewing patterns, learn with step-by-step sewing tutorials, share your sewing creations and skills, find inspiration and sewing project ideas and connect with people just like you.

Leo also led me to Hacking Couture, which is a series of workshops that have resulted in the beginnings of a collection of open source couture codes. By documenting the “hidden” structure that gives a couture brand its identity, they release the form into the public domain.

From the codes page:

Hacking Couture focuses on the documentation of established fashion identities in order to create a shared library that allows democratic access to its findings and contributions. The open source movement took its peak during the 1990’s and ever since, the software revolution has allowed for the exploration resulting on endless advancement in diverse fields, giving an improvement of the industry.

This advancement has been the result of opening the dialogue among computer programmers and by allowing public access and contribution, by the sharing of existing computer code and allowing its use for other applications. In addition to the sharing aspect, documention of these computer code is an importnat part of the open source cullture. More recently, the open source movement has been applied to hardware [physical aspect of computers, the circuit and all the other physical components that make a computer]. People have started to document how they hack into electronic devices [brake into a system and modify it in order for it to execute the desired task].

Hacking Couture’s ongoing research and documentation focuses on the documentation of the design code of established identities in order to derive new and evolving fashion aesthetics, serving also as a platform for
self-expression and nest for new ideas.


Once the code has been documented Hacking Couture publishes an example of a design hack based on the identity studied, in order to share and enhance the fashion dialogue between remote users, and participants of the Hacking Couture workshops.

And last but not least I learned about Studio 5050, who say:

In the summer of 2006 Despina built a modular, reconfigurable dress made of 400 identical white circuit boards. The idea was to experiment with modular structures and be able to assemble and re-assemble circuits to come up with new iterations of garments and accessories.

That work eventually led to the modules collection as it stands today. Despina started working with Zach on the collection in March 2007 as part of an ongoing experimentation with materials, rapid prototyping and concept iteration.

So far we have developed a collection of 5 modules and a flexible, removable and rechargeable battery system. We have also developed a series of garments both in order to demonstrate how the modules can be used but also in order to learn from the process and find ways to improve them. We strongly believe that it is in the doing, and in the space between engineering, interaction design and the history of clothing that the most interesting ideas emerge.



So far we have developed modules for sound input and output, LEDs, and temperature sensing and display.

We have also designed a unique, rechargeable battery system that is easy to remove and reattach to garments or in other applications where washability is important.

All modules share a common interface; with one wire each for power, ground, and communication, they can be easily connected to one another or to an Arduino-based circuit. Multiple modules can communicate with each other over a single ommunication line. Each module has a unique ID, and the infrastructure is already in place to allow them to communicate with eah other.

All modules offer connection points that accomodate a conductive ribbon or thread. Wires, conductive velcro, metal rings, or snaps can also be used to wire the modules into a circuit.

Each module features a programming header; new programs can be loaded with an inexpensive AVR programmer or by a custom made programmer. Programs can be written in Arduino (version 010 or later).

More about Studio 5050’s modules here.

While on the subject of modular wearable electronics, I should mention the LilyPad Arduino. I would not be surprised to discover that LilyPad and Studio 5050 modules could be used together. LilyPad modules are sold by Sparkfun.



This website uses IntenseDebate comments, but they are not currently loaded because either your browser doesn't support JavaScript, or they didn't load fast enough.

No Comments